Rasterization

May 1, 2006

Triangles Only

» We will discuss the rasterization of
triangles only.

- Why?
— Polygon can be decomposed into triangles.
— A triangle is always convex.

— Results in algorithms that are more
hardware friendly.




Scan-converting Triangles
The two most common strategies for scan-converting
triangles are edge walking and edge equations

There are, however, other techniques including:
- Recursive subdivision of primitive (micro-polygons)

— Recursive subdivision of screen (Warnock's algorithm)

““““““ .
¥ War k g
A

Subai

1/22/2003 Lecture 4

Being Hardware Friendly

» [Angel 4e] Section 7.11.3 or

» [Angel 3e] Section 8.11.6:

— Intersect scan lines with polygon
edges.

— Sort the intersections, first by scan
lines, then by order of x on each scan
line.

— It works for polygons in general, not
justiin triangles.

— O(n log n) complexity =» feasible in
software implementation only (i.e., not
hardware friendly)

6N7
5/ N8
4] 9
a3 ¢
2/ 10
1 1
A" 12

Figure 8.55 Polygon gener-
ated by vertex list.

figure 8.56 Desired order of
vertices.




Edge-Walking Triangle Rasterizer

Notes on edge walking:
- Sort the vertices in both x and y

— Determine if the middle vertex, or breakpoint
lies on the left or right side of the polygon.
If the triangle has an edge parallel to the
scan line direction then there is no breakpoint.

— Determines the left and right extents for each
scan line (called spans).

— Walk down the left and right edges filling the pixels
in-between until either a breakpoint or the bottom vertex is reached.
Advantages and Disadvantages:
- Generally very fast
— Loaded with special cases (left and right breakpoints, no breakpoints)
— Difficult to get right
— Requires computing fractional offsets when interpolating parameters
across the triangle
1/22/2003 Lecture 4 8

Py
b
L
by

WY

)88 04

Fractional Offsets

We can use cerfing to find the leftmost pixel in span and ffoor to find
the rightmost pixel.

The trick comes when interpolating color values. It is
straightforward to interpolate along the edges, but you must be
careful when offsetting from the edge to the pixels center.

1/22/2003 Lecture 4 9




Color and Z

* Now we know which pixels must be
drawn. The next step is to find their
colors and Z’s.

» Gouraud shading: linear interpolation of
the vertex colors.

* Isn’t it straightforward?

— Interpolate along the edges. (Y direction)

— Then interpolate along the span. (X
direction)

Interpolation in World Space

Vs Screen Space
* p1=(x1, y1, z1, c1); p2=(x2, y2, z2, c2);
p3=(x3, y3, z3, c3) in world space
o If (x3, y3) = (1-t)(x1, y1) + t(x2, y2) then
z3=(1-t)z1+t z2; c3=(1-t)c1+t c2
« But, remember that we are interpolating
on screen coordinates (X', y'):

x'w a b c¢ dix
ywl _le f g hjy
Z'w i j k 1|z
w m n p qfl




Let p'y=(xXy, ¥'4); P'2=(X3, ¥'2) and

P'3=(X'3, Y'3)= (1-8)(X'y, ¥'1) + S(X3, ¥'5)
Does s=t? If not, should we compute z3 and
c3 by s ort?

Express s in t (or vice versa), we get
something like: t-w,

B w, +t(w, —w,)
So, if we interpolate z on screen space, we
get the z of “some other point on the line”

This is OK for Z’s, but may be a problem for
texture coordinates (topic of another lecture)

Rasterizing Triangles with Edge Equations

An edge equation is simply a
discriminating function like those
used in curve and line-drawing
algorithms.

An edge equation segments a planar
region into three parts, a boundary,
and two half-spaces. The boundary is
identified by points where the edge Ax+By+C <0
equation is equal to zero. The half-
spaces are distinguished by
differences in the edge equation's
sign. We can choose which half-space
is positive by multiplication by -1.

We can scale all three edges so that
their negative half-spaces are on the
triangle's exterior.

Ax+By+C >0

b 4
Sl

1/22/2003 Lecture 4




Notes on using Edge Equations

+ Compute edge equations from vertices

+ Orient edge equations

+ Compute a bounding box

« Scan through pixels in bounding box evaluating the edge equations
* When all three are positive then draw the pixel.

X
yooe

56680058

)00
b4
90 ¢

8:8.6:

10600080600004000666004
)00 N NN SIS
16.60606068000506866086
IOV NI SO DL

T

1/22/2003 Lecture 4 1

A Post-Triangle World'?

Are triangles really the best rendering
primitive?

100,000,000 primitive models displayed
on 2,000,000 pixel displays.

Even even if we assume that only 10% of the
primitives are visible, and they are
uniformly distributed over the whole
screen, that's still 5 primitives/pixel.
Remember, that in order to draw a single
triangle we must specify 3 vertices,
determine three colors, and interpolate
within 3 edges. On average, these triangle
will impact only a fraction of a pixel. Models of ths magritude are being bult

today. The leading and most ambitious
work in this area Is Stanfords "Digital
Michelangelo Project”.

1/22/2003 Lecture 4 32




Appendix

Derivation of s and ¢

« Two end points P,=(x,, y4, z;) and
P,=(Xy, Yo, Z,). Let P3=(1-1)P,+(t)P,

« After projection, P,, P,, P are projected
to (X’4, y*4), (X2, ¥’2), (X’3, ¥'3) in screen
coordinates. Let (Xx’3, y’3)=(1-S)(X’1, Y1)
+ (X5, Yp)-




* (X1, Y1), (X5, ¥'5), (X5, ¥'3) are obtained
from P,, P,, P; by:

x'l W1 xl X2W2 x2
Yhiw - M B2 , yhw, v Y2
z'\w, z, z'\w, zZ,
L W 1 w, 1
_x'3 Wy X3 X, X,
LW

Vs 3:My3 =M((l—t)y1 +ty2)
z'y Wy Z, Z) z,
L W 1 1 1

Slnce xl 'x'l M}1 x2 xvz W2

M N|_ YW, , M Yal_ yhw,

Z, Z'1 W z, 2'2 w,

1 w, 1 w,

We have: |x:w; X X,

W

R Y R PRI R

Z3Wy ! z,

w, 1 1

X' w x',w,

w

—(1-1) Yawm p Yaw,

zh'w z')w,




When P; is projected to the screen, we
get (x5, y’;3) by dividing by w, so:

(I-)x"\w +t-x",w, A=)y, w+t-y",w,
(I=Ow, +t-w, ~— (I=)w +t-w,

(x'5, ") =(

But remember that

(X,3’ y,3)=(1's)(xj1’ y,1) + S(X’Q’ y,z)
Looking at x coordinate, we have
(I=s)x, +5-x, = A=0x')w+1-x', wy
(1-w, +t-w,

We may rewrite s in terms of t, w,, w,, X’4,
and x’,.
In fact, tw,

— _ r-w,
(I=0w, +t-w, w +t(w,—w,)

or conversely

5w 5w

_s-w1+(1—s)w2 - s(w, —w,) +w,

Surprisingly, x’, and x’, disappear.




	Rasterization
	Triangles Only
	
	Being Hardware Friendly
	
	
	Color and Z
	Interpolation in World Space vs Screen Space
	
	
	
	Appendix
	Derivation of s and t

